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In this paper, it is proven that the zeros of the Legendre polynomials Pn(x)

satisfy the inequality

Vj E {2, 3,... , n - I}, Vn E {3, 4, ... }.

This result is obtained by applying Sturm's comparison theorem to two
homogeneous linear differential equations of second order, each of which has a par
ticular solution deduced from the function

0~x~2.

c' 1987 Academic Press, Inc.

I. INTRODUCTION

During the open problems session of the Laguerre Symposium on
Orthogonal Polynomials and Their Applications which took place at Bar
Ie-Due (France) in October 1984, P. G. Nevai posed the following problem
originating with R. DeVore:

Prove that for each n belonging to [3, 4, ... }, the zeros of the Legendre polynomial
Pn(x), arranged in ascending order between the bounds -I and I, namely,

satisfy

-1 <x\n J < X¥'I < ... <x~,r1) < 1, (I)

(I - x)nl,HI - x;'~ I)"; (I - x;nl)', vj E { 2, 3, ..., n - 1 ). (2)

This problem is related to questions of monotonicity, i.e., whether or not
the second and higher order differences of the sequences of consecutive
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posItIve zeros of certain classical orthogonal polynomials, arranged in
ascending order, are all positive [2~5]. Indeed, once the strict inequality
formulated in the abstract is proven, it appears that

In(l-xln ) )-2In(l-x(n 1)+ln(l-xln ) )<0
./-1 1 1+1'

Vj E {2, 3,..., n - 1}, Vn E {3, 4, ... },

showing that In( 1 - x~n»), k = 1, 2,..., n, is a convex function of k. Here, the
differences of second order are all negative.

A quick numerical verification carried out for n = 3, 4, and 5 confirms
the assertion (2) without the equality sign. In the analytical proof which
will follow, I temporarily omit the superscript in the notation of the zeros
of Pn(x) for the sake of simplicity. This proof will consist of an application
of Sturm's comparison theorem in the formulation of Ahmed et al. [1]. I
recall this theorem here for convenience, using my own notation:

Let the real function y(x) be a non-trivial solution of the differential equation

y"(x) +f(x) y(x) == 0, xER (3)

having :x" :X2'"'' CXm as consecutive zeros in the real interval ]a, be:

a < :x I < (X2 < ... < (Xm < b.

Similarly, let z(x) be a non-trivial solution of

z"(x)+g(x)z(x)=o

with consecutive zeros 131, 132,'''' 13m belonging to ]a, c[:

a < PI < f32 < '" < Pm < c.

(4)

Suppose that the coefficients f(x) and g(x) are continuous functions satisfying
f(x) < g(x) in [a, Pm], and that y(x) and z(x) are such that

lim [y'(x) z(x) - z'(x) y(x)) = 0.
x _a+ 0

Then

VkE{I,2, ... ,m}. (5)

Under the conditions of Sturm's theorem, the differential Eq. (4) is said to
be a Sturmian majorant of the differential Eq. (3).

2. PROOF OF ASSERTION (2) (WITHOUT EQUALITY SIGN)

Consider the real function
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which has its n (single) zeros lying between the branch-points 0 and 2 of its
extension to C:

O<I-x"<I-x,, 1< ... <1-x l <2,

whereby the x-values are the zeros of PrJ,) as mentioned in (1). It is a
solution of the differential equation

" in(n+l) 1 l'
U (x)+Lx(2-x)+ x2(2-x)2 0(x)=0.

Let us choose one of the zeros of P,,(x), x, say, and put

V,,(t)=u,,((I-x r ) t),
2

O~t~--.
I-x,

(6)

The n zeros of v,,(t) are comprised in the inequalities

I-x" l-x"_1 l-x'+1 I-x, 10<--< <.,,< <1< < ...
1- x, I - x, I - x, I - x,

I-xI 2
<--<-

I-x, I-x,'

and vn(t) is a particular solution of the differential equation

(7)

We shall regard this equation as the counterpart of (3), with V(t) playing
the role of y(x).

Next, we wish to repeat this way of proceeding, with r replaced by r - I.
This requires that r be restricted to the set of integers {2, 3, ... , n}. Then we
can define the function

Wn(t)=Un((l-x r ilt),

whose n zeros satisfy

2
O~t~ ,

I -X r __ 1

(9)

I-XI 2 ( 2)< <- <-.
I - X r _ I 1 - x, 1 1 - x,

( 10)
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Wn(t) is a particular solution of the differential equation

87

,,{n(n+l)(1-xr _ d I }
W(t)+ t[2-(1-x

r
_dt]+t2 [2-(l-x

r
_

1
)tf W(t)=O. (11)

We regard this differential equation as the counterpart of (4), with W(t)
replacing z(x). The formulae from ((j) to (11) are meaningful for any r
belonging to {2, 3, ..., n}. Now, the two functions of t between the braces
appearing in (8) and (11), respectively, are continuous in 0 < t <
2/(1 - x r _ 1)' In this interval, we have that

n(n + 1)( 1 - x r) 1---.....:..._---.....:...---.....:...-:.- +------
t[2 - (1 - x,) t] t 2 [2 - (1 - x,) t]2

<n(n+l)(l-xr _Il+ 2 1 2 (12)
t[2-(1-xr l)t] t [2-(1-x r l)t]

is equivalent to

- 2n (n + I )[2 - (I - x r tl t] [2 - (I - x r ) t] < 4 - (I - x r _ tl t - (1 - X r ) t.

The latter inequality is fulfilled in 0 < t < 2(1 - x r _ 1) since the left-hand
side is negative and the right-hand side is positive. Hence, (12) holds
a fortiori in the interval

(13 )

which plays the role of [a, Pm] mentioned in Section I, is non-degenerate
for r still more restricted than before, namely, r E {3, 4,... , n }, whereby n ~ 3
and is embedded in 0 < t < 2/(1 - X r d, according to (10).

Finally, with the lower bound a equal to 1, there comes

lim [v~(t) wn(t) - w~(t) vn(t)] = 0,
t~l

since vn(t), wn(t), v~(t), w~(t) are continuous in the neighbourhood of t= 1,
vn(1)=un(1-x,)=O, wn(1)=un(l-x,_d=O, and v~(1), w~(1) are finite.
Therefore Eq. (11) is a Sturmian majorant of Eq. (8) in the interval (13),
and we conclude that

'ir E {3, 4, ... , n}, 'in E {3, 4, ... }, (14)
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according to (5) applied for k = I. Replacing r - 1
yields

VjE {2, 3, ... , n-I}, VnE {3, 4, ... },

by j in (14)

( 15)

which is the assertion (2) without equality sign.
It may be asked whether the full scale application of Sturm's comparison

theorem, i.e., with k > 1 in (5), leads to any additional results concerning
the zeros of the Legendre polynomials. The answer is negative, because (5)
when applied to (7) and (10) leads to

vj E {2, 3,..., r - I },

"IrE {3, 4, ... , n}, VnE {3, 4, ... }.

Completely equivalent to this is

"IrE U+ l,j+2, ..., n},

VjE {2, 3, ... , n-I}, VnE {3, 4, ... }, (16 )

which is in essence nothing but the result (15) when it is rearranged as a
chain of consecutive inequalities of ratios. From (16), it follows that

(1- x(n) )(1- x(n)) < (1- x in ) )(I-xin ))
"'1_1 ~r "r--I .I' (17)

valid for

"IrE U+ l,j+2, ... , n}, VjE{2,3, ... ,n-l}, "In E {3, 4, ... }, (17')

but all these inequalities are a consequence of (15).
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